
Fundamental concepts

Common time-series data types in neuroscience
● Intracellular voltage recordings
● Spike trains
● LFP/ECoG
● Calcium imaging
● fMRI/EEG/MEG
● Fiber photometry
● Video/tracked behavior
● Stimuli/other sensors
● Simulated data

Challenges of time-series analysis

Model fitting
● Parameters
● Loss functions
● Training/test data
● Bias-variance tradeoff

Random processes perspective

Dynamical systems perspectiveDiscriminative vs generative models

Model comparison



> No direct access to membrane potential
> Common in vivo approach
> Need to “spike sort” to get APs
> Can record many neurons simultaneously
> Usually low spatial resolution
> High temporal resolution
> Spike trains ~ “point process”

Common types of time-series data in neuroscience (I)

Intracellular voltage Extracellular voltage/spike trains LFP

Electrical recordings of neural activity

> Direct access to membrane 
potential
> Very hard in vivo
> Can record few neurons at a time
> Can easily see APs
> High temporal resolution

> Often in humans with epilepsy
> Average over many neurons
> Low spatial resolution
> High temporal resolution

ECoG
Spike sort

Remove 
spikes



Common types of time-series data in neuroscience (II)

Calcium imaging

Neuroimaging

fMRI EEG/MEG

> Common in vivo approach
> High spatial resolution
> Low temporal resolution (~500 ms)
> Can identify individual neurons
> Can “sort of” infer spikes
> Subject to motion artifacts

> Noninvasive/human-friendly
> BOLD signal
> Average over many neurons
> High spatial resolution
> Low temporal resolution

> Noninvasive/human-friendly
> Low spatial resolution
   (~max 256 channels)
> Average over MANY neurons
> High temporal resolution



Common types of time-series data in neuroscience (III)

Raw video Tracked behavior

Behavior

> Temporal resolution of camera
> Useful for neuroethology
   (characterizing behavior 
   before seeking neural 
   mechanisms)
> Hard to process directly

> Usually constructed w 
computer vision algorithms
(DeepLabCut, SLEAP)
> Often easier to work with 
than raw video

State/syllable sequences

> Constructed by 
clustering/segmenting 
behavioral motifs/ 
syllables
> Discrete data type

Audio

> High sample rate
> Often represented 
as spectrogram
> Can also cluster/ 
segment



> Useful for predicting behavior of 
unobserved variables

Common types of time-series data in neuroscience (IV)

Neural activity: firing rates

Simulation data

Auxiliary dataSynaptic strengths

Neural activity: voltage/spikes

> Useful abstraction for 
recurrent neural networks

> Model of realistic neural responses
> Arbitrary spatial/temporal resolution

> Extremely hard to measure
experimentally



Common types of time-series data in neuroscience (V)

Miscellaneous

Stimuli/other sensor data

> Used to retrieve “actual times” 
rather than computer-programmed 
signals
> Typically high precision
> Requires calibration/sync with 
other devices

Voltage imaging Inferred variables

> Relatively new
> Often toxic
> In principle allows direct 
access to membrane 
voltage for indiv cells
> In principal high spatial 
and temporal resolution 

> Constructed from 
empirical data or 
simulations
> Often captures 
“low-dimensional” signal



Data type by mathematical structure

Point-process

Spike trains
Event times

Continuous

Univariate

LFP/ECoG recording

Fluorescence/imaging 
signal

Firing rate

Voltage

Microphone signal

Multivariate

Multivariate “structured”

Multi-modal

Point-process

Population spike trains

Symbolic/token

Behavioral state 
sequence

Population fluorescence 
Multi-channel LFP

Population firing rates
Stimulus patterns

Neuroimaging movie (e.g. fluorescence, 
BOLD signal, EEG, ECoG)

Behavior video

Tracked behavior keypoints

Stimulus video

Audio spectrogram

Firing rates of spatially arranged neurons

Continuous Simultaneous neural recordings + 
behavioral audio/video/tracked keypoints

Stimulus patterns + neural recordings + 
behavior

Etc. 



Challenges of analyzing time-series data in neuroscience

Violates many assumptions of 
classic signal processing

Easy to make 
mistakes

Big datasets Multi-modal datasetsMany methods to 
choose from

Many small decisions to 
make along the way

Weird statistics/
lack of trials

Difficult to interpret 
analysis results

Takes time to be 
rigorous

High dimensionalityMissing data/variable 
trial lengths

Model-fitting can be
highly complex



Mathematical models

Simplified descriptions of 
system/process underlying data

“All models are wrong. Some are useful.”

Why are models useful?

Make
predictions

Demonstrate self-consistency
of understanding

Extract interpretable variables/ 
parameters from data

Test hypotheses against data

Can perform experiments on 
them in silico.

Various types (descriptive, mechanistic…)



Can be used as discriminative models.

Discriminative vs generative models

Discriminative models Generative models

Input = data
Output = labels, clusters, segments, etc.

Can generate artificial data
in same format as input data.

Class A

Class B

P(D|θ)

Real data example 1

Real data example 2

Artificial sample 1

Artificial sample 2

No way to “sample” artificial inputs



Model fitting

Parameters

Loss functions

Training/validation/test data

Bias-variance tradeoff

Overfitting

Model comparison



Model fitting - Parameters

Models specified by equation and parameters Different parameters yield different behavior

Complexity/flexibility ~ number of parameters

N2+1 parameters

Equation

Parameter



Probabilistic Loss

E.g. -P(data|θ)

Model fitting - Loss functions & gradient descent

Worse fit

Better fit

Gradient 
descent

Deterministic Loss
“Distance” from model 

predictions to data.

Loss landscape

Regularizer

Dataset



Model fitting - Training/test data

Time-series Case 1:

Train/test → different “trials”

T

Time-series Case 2:

Train/test → different timepoints

T

Train & test points should be 
separated well beyond 
autocorrelation time* of signal
(otherwise not independent)

*Need to estimate from data
(can be challenging when 
signals have long timescales)

Train

Test

Often want model to predict 
never-before-seen data

1. Fit model to training data.
2. Evaluate generalization 

performance on held-out test data

Training & test data should be 
statistically independent given model

Often have training/validation/test data.
● Validation data used to simulate 

generalization to test data.
● Should only use test data for final 

performance evaluation. Usually average analysis results over N random train/test splits



Model fitting - Bias-variance tradeoff

(*but see “double descent”)

Low-variance, high-bias
(usually fewer parameters)

High-variance, low-bias
(usually more parameters)

Experiment 1

Experiment 2

Experiment 3

data
model



Overfitting

Typically think of data as signal + noise:    yi = f(xi) + η

During fitting, want model to distinguish signal from noise

But when # parameters ~ # data points ⇒ model can treat noise as signal
● Fits training data near-perfectly
● Usually generalizes poorly to held-out data

Solutions:
● Use fewer parameters (i.e. “simpler” model)
● Use more data (decrease #params / #data)
● Regularize parameters (introduce penalty to loss function e.g. that keeps params small)
● Add more parameters (“double descent” phenomenon in modern ML)

Common check: check goodness-of-fit on held-out data not used in training (“validation” set)
● Validation set should be independent samples from training set (non-trivial for time-series)



Parameters → “Knobs” of model to turn

● Fit during “inner loop” e.g. gradient descent

Hyperparameters → model “architectural features”

● Determined in “outer loop” e.g. grid search

Usually # parameters >> # hyperparameters

Model fitting - Parameters vs hyperparameters

Example 1: Linear filter

Filter parameterized by h(0), h(1), … h(T).

Hyperparameter = T (filter length).

Example optimization routine:

For each T = T1, …, TN: fit h(0:T) to data
Select T with best goodness-of-fit

Example 2: Artificial neural network

Parameters = weights

Hyperparameters = # layers, learning rate, …

Typically



Model comparison

“Best” model is subjective

● Typical “score” → goodness-of-fit (+ penalty)
● Different models can explain different features of data

Can compare across parameters, hyperparameters, model classes

● “Model comparison” ~ usually comparing best-fit models given different hyperparameters or classes

Multiple models can explain data equally well

Nested model analysis

Model A: θ = (θ1, …, θP)
Model A’: θ = (θ1, …, θP, θP+1)

● E.g. θP+1 = weight on feature P+1

If Loss(A’) < Loss(A): include θP+1 in model

Common use case: Can we predict z(t) 
better from x(t) & y(t) than from just x(t)?

Various quantitative ways to score models:
● Information criteria (e.g. AIC/BIC): goodness-of-fit 

penalized by # params
○ Models with more parameters usually more flexible (higher 

variance)
○ All data used to fit model

● Cross-validation: goodness-of-fit on held-out data
○ Training data → Used to fit model
○ Validation/test data → Used to eval model
○ Requires more data (since fit only uses X% data)



Random processes perspective (0)

Dataset generated via Random Process
(a.k.a Stochastic Process)

Distribution over 
trajectories x(t)

Dataset of n sample trajectories



Random processes perspective (I)

Univariate probability 
distribution

Multivariate probability 
distribution

Random process

Samples → numbers Samples → vectors
(indexed by i: vi )

Samples → functions
(“indexed” by t: x(t) )

Equivalent in code
when represented as arrays

P(x) P(x) P[x(t)]
 *short for P(X=x)

Hard to draw 
for > 2D

3.13, 2.5, -2.62, 10.23, … …
…di

m
en

si
on

“Ensemble” = infinite 
collection of samples



Random processes perspective (II)

Common random processes

Gaussian Process Poisson Process White noise Brownian motion

All subsets [X1(t), …, XT(t)]
jointly Gaussian distributed

Specified by mean and 
covariance function

Common model of continuous 
data with structure

Specified by “rate” r(t)

“Point process” (outputs series of 
delta functions)

All timepoints s(t) independent 
given rate r(t)

Common model for spike trains

All timepoints independent

“Infinite variance”

Can be type of 
Gaussian process

Common model of noise

Integrated white noise

All increments independent

Common model of 
accumulation process

Type of Gaussian
process



Random processes perspective (III)

Key probability concepts

Bayes’ Rule Also Bayes’ Rule

Joint 
distribution

Marginal 
distribution

Conditional 
distribution

Chain rule

…



Random processes perspective (IV)

Key random processes concepts: stationarity

Stationarity: Joint statistics don’t depend on absolute time, e.g.

Stationary Not stationary 
(increases over time)

(*Could be stationary over longer timescale)

time

si
gn

al

time

si
gn

al

Nonstationary: any statistic can 
change over time, not just mean

Many models/analyses
assume stationarity of signal



Random processes perspective (V)

Autocovariance

= Fourier transform of
Power spectral density

(Wiener-Khinchin theorem)

“Graphical” statistic summarizing how quickly 
signal changes over time/how signal at nearby 

timepoints are related

time

si
gn

al

“Correlation time” τ0 describes 
timescale of signal fluctuations

(*depends on well-behaved 
autocovariance function)

(equivalent to autocovariance 
for zero-mean processes)

Autocorrelation

Property of model P[x(t)]
but can estimate from data

y(t) x(t)

Covariance of signal at two 
times separated by τAssumes stationarity

(depends on time lag only)



Random processes perspective (VI)

Cross-covariance

= Fourier transform of
Cross-spectral density

(Wiener-Khinchin theorem)

Key statistic describing how two time-series are related
● Useful for detecting leading/lagging processes

time

si
gn

al

Cross-correlation
(equivalent to 

cross-covariance for 
zero-mean processes)

τ 

y(t) x(t)
y leads x

Generally not symmetric
(unlike autocovariance)

Property of model P[x(t),y(t)]
but can estimate from data

Assumes stationarity
(depends on time lag only)



Random processes perspective (VII)

Comparing/fitting random process models to data

Maximum likelihood (ML) Maximum a posteriori (MAP) Marginal likelihood

Posterior
Likelihood Prior

Evidence (marginal likelihood)

Bayes’
Rule

> Requires evaluating data probability 
under generative model
> Equivalent to MAP with uniform prior 
(*except over unbounded spaces)

Maximize

with respect to θ.

Maximize

with respect to θ.

> Have to choose prior.
> Can ignore denominator 
during optimization

> Useful for comparing 
model classes

Fully Bayesian goal:
Compute posterior 

from data. 
(But usually hard because of 

integral in denominator).



Random processes perspective (VIII)

Learning and inference

Many models have both “hidden states” + parameters

● Hidden Markov Model (HMM)
● Kalman Filter (like continuous HMM)

Infer hidden states and learn parameters

Standard algorithm = Expectation-maximization

● Alternates between inferring hidden states and learning parameters

ztzt-1 zt+1

ytyt-1 yt+1

P(yt|zt, yt-1, zt-1) = P(yt|zt)



Generative model of data = equations of motion

Dynamical systems perspective (0)

x: state f: “velocity”

Sample artificial trajectories by integrating velocity over time



Dynamical systems perspective (I)

State space:

Dynamical system: set of 1st-order ordinary differential equations*

● Rarely “solve” for x(t)
● Typically: characterize 

fixed points, timescales, 
limit cycles, sensitivity to 
initial conditions, etc

(hard to visualize in > 3D)

Discrete-time version

↔

x1

x2

Churchland et al 2012
(macaque motor cortex)

Trajectory determined by initial condition x(0) and flow field

Flow field (also in       )

Trajectory: x(t)

*higher-order systems can be 
rewritten as 1st-order systems

x1 x1

x2x2

vector notation component notation



Dynamical systems perspective (II)

Linear dynamical systems

Typically decay to zero or blow up to infinity
● Depends on max eigenvalue of J
● λmax < 0 ⇒ decay,  λmax > 0 ⇒ explode

Periodic behavior requires “fine-tuning”: λmax = 0

Specified by single matrix
(+ optional neural timescale τ) “Driven” version

Discrete-time version
or

Real eigenvalues → decay/growth dynamics
Imaginary eigenvalues → rotational dynamics
Complex eigenvalues → decay/growth/rotational dynamics

At most 1 stable fixed point at origin
Stable limit cycle impossible
Chaos impossible
Often used as local approximations of nonlinear dynamics

“Neural” form



Dynamical systems perspective (III)

Recurrent neural networks

“Neuron” “Synaptic 
weight”

Rate RNN

“Nice” (continuous, differentiable)
“Neurons” can model real neurons
OR used as generic flexible model

“Voltage”
Weights External

inputs

Firing rates

Activation 
function

Spiking RNN

Not differentiable
Usually model of real neurons

Spike trains

LIF (leaky integrate-and-fire) is 
most common model

But many variations
(e.g. adaptive LIF)



Dynamical systems perspective (IV)

Commonly studied phenomena

Fixed points Limit cycles Chaos

2D projection
(no chaos in 2D)

Common model: 
Rate RNN with 
large, random 

weights and tanh 
activation

(Sompolinsky 
1988)



Dynamical systems perspective (V)

Noisy dynamical system as a random process

Additive noise
(common)Noise

Observation 
distributionExample 1:

    x(t) = firing rates

Example 2: 
    x(t) = hidden computational variables,
    y(t) = firing rates

Stochastic 
differential 
equation (SDE)

Variable initial 
conditions x(0) and 

inputs u(t) can also be 
source of randomness

(But don’t need to 
know stochastic 
calculus for most 
data analyses)



Loss = negative likelihood (probability* of 
trajectories) or a posteriori probability

*Need to add probability/noise
to dynamics model

Dynamical systems perspective (VI)

Approach 1:
Qualitatively compare to data

Approach 2:
Fit directly to data

Comparing/fitting dynamical systems models to data

Train RNN to perform task
Then examine RNN dynamics

Model system via dynamics equations
Vary parameters to study behavior

Use e.g. dimensionality reduction to visualize 
empirical vs model dynamics

Loss = distance to empirical trajectories
(usually average trajectories over trials)

*Researchers often model “low-dimensional” 
dynamics underlying high-dimensional noisy 

neural recordings
(various ways to do this)

Compare fixed points, timescales, etc.


